6574

A Study of Nitrogen-15 Nuclear Magnetic Resonance Shifts in Liquid ¹⁵NH₃-Solvent Mixtures¹⁸

William M. Litchman,^{1b} Mohammed Alei, Jr.,^{1c} and Alan E. Florin^{1c}

Contribution from the Department of Chemistry, University of New Mexico. Albuquerque, New Mexico 87106, and University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544. Received March 14, 1969

Abstract: In nmr studies of hydrogen bonding, relatively little has been done to determine the influence of hydrogen bonding on the nmr shift of the atom which donates the electron pair in forming the hydrogen bond. As an approach to this problem, we have chosen to investigate the ¹⁵N nmr shift for the ¹⁵NH₃ molecule in various environments. The ¹⁵N nmr shift relative to gaseous ¹⁵NH₃ was measured as a function of concentration for ¹⁵NH₃ in 13 solvents. Utilizing high-resolution techniques, the ¹⁵N shifts could be measured to ± 0.2 ppm at ¹⁵NH₃ concentrations as low as 2 mole %. Extrapolation to zero ¹⁵NH₈ concentration yields a set of "infinite-dilution" shifts which are well interpreted on the basis of a simple model describing the interactions between the ¹⁵NH₃ molecule and solvent molecules. The model assumes that the observed infinite-dilution shifts are the sum of contributions due to two general types of interactions: (1) the interaction of the ammonia nitrogen lone-pair electrons with solvent-molecule groups and (2) hydrogen bonding between solvent-molecule unshared electron pairs and ¹⁵NH₃ protons. The results indicate that interactions involving the nitrogen lone-pair electrons make a rather large paramagnetic contribution to the ¹⁵N shift in ¹⁵NH₃ while the hydrogen bonding of ¹⁵NH₃ protons by solvent electron pairs makes a much smaller diamagnetic contribution. These results are discussed in terms of the Ramsey chemical-shift formulation, and possible implications with regard to electronic displacements produced by the various types of interactions are noted.

The application of nmr techniques to studies of hydrogen bonding has produced a large volume of work dealing mainly with the nmr shift of the proton in various types of hydrogen bonds. Relatively little attention has been given to the influence of hydrogen bonding on the nmr shift of the atom which donates the electron pair to the hydrogen bond. In some recent work^{2,3} we have observed that the ¹⁷O resonance in pure liquid H217O and the 15N resonance in pure liquid ¹⁵NH₃ both occur at significantly lower applied fields than the respective resonances in the gaseous molecules. Moreover, both resonances move to lower fields with decreasing temperature in the pure liquids. It has also been observed⁴ that the shift of the ¹⁷O resonance in $H_2^{17}O$ at low concentration in a liquid solvent is dependent upon the nature of the solvent. In this work we report the results of a rather extensive study of ¹⁵N nmr shifts for ¹⁵NH₃ in a number of different solvents as a function of concentration.

We anticipated that such a study might serve to enhance our understanding of the interactions which influence the nmr shifts of atoms which commonly serve as electron-pair donors in hydrogen bonding.

Experimental Section

The ¹⁵N used in this work was obtained from a low-temperature nitric oxide distillation process which provides material with up to 100% 15N.5 In processing the 15NO, the 15N is recovered as Ca315N which is then hydrolyzed to yield the 15NH3 used in this study.

The 15NH3-solvent mixtures were prepared directly in nmr sample

tubes by condensing measured amounts of gases (by pressure change in a known volume) or liquids (by weight) into 5-mm o.d. tubes prepared from standard-wall (~ 1 mm) Pyrex tubing. The total sample volume was kept at ~ 0.5 ml and samples were sealed under vacuum. In samples containing small concentrations of ¹⁵NH₃ it was sometimes advantageous to add very small amounts of NH4Cl which, by accelerating proton exchange, ensured a single ${\rm ^{15}N}$ resonance peak. In a few cases, where the added NH4+ was ineffective in producing a sharp averaged line, small amounts of KOH were added to suppress any averaging so that observation of a sharp ¹⁵N quartet was possible. Although the ¹⁵N-H coupling constant could then be observed, the primary purpose of observing the multiplet was to obtain sharp peaks which then could be used to obtain an accurate chemical shift value. In all series of solutions except the ¹⁵NH₃-H₂O and ¹⁵NH₃-NH₄Cl systems, a very small amount of TMS was added as an internal standard for the proton shift measurements which were also made on most of these solutions.

The ¹⁵N nmr measurements were made on a modified Varian D-60A spectrometer utilizing an external water-proton lock-on system. The Varian 8.13-MHz radiofrequency components (normally used for ¹⁷O nmr) were modified to operate at 6.08 MHz which is the frequency required for ¹⁵N at a field of \sim 14 kG. The external lock-on system was used to keep the magnetic field constant by maintaining the water proton in resonance at a fixed frequency of 60 MHz. This 60-MHz lock signal was supplied by a harmonic of the 5-MHz output of a General Radio Model GR 1163 frequency synthesizer. This same source also furnished a constant intermediate frequency of 11.08 MHz to provide the required 5-MHz difference frequency for the 6.08-MHz receiver. The ¹⁵N resonances were then recorded by a frequency sweep utilizing a Hewlett-Packard Model 5100 frequency synthesizer and Model 5110 driver. The frequency synthesizer was swept either by the x-pot of the Varian flat-bed recorder or by the ramp output of the Varian C-1024 time-averaging computer. Bias for the frequency sweep was supplied by a Model ABC-40-0.5 M Kepco power supply.

The ¹⁵N shifts were measured at 29.6 \pm 0.5° relative to pure liquid ${}^{15}NH_3$ sealed in a 5-mm o.d. Pyrex tube similar to those used for the 15NH3-solvent mixtures. Preliminary experiments demonstrated that the ¹⁵N resonant frequency in this reference sample could be reproduced to better than 0.05 ppm on repeated removal and replacement in the probe. Thus the ^{15}N shift in an $^{15}NH_3$ solvent mixture was made by simply measuring its resonant frequency and comparing it with the ¹⁵N resonant frequency in the liquid ¹⁵NH₈ reference sample. Susceptibility corrections were made by measuring the volume susceptibilities of all samples and applying the correction for cylindrical geometry.6 The shift of

^{(1) (}a) Work supported by the U.S. Atomic Energy Commission; (b) University of New Mexico; Associated Western Universities Research Participant at Los Alamos Scientific Laboratory; (c) Los Alamos Scientific Laboratory.

 ⁽²⁾ A. E. Florin and M. Alei, J. Chem. Phys., 47, 4268 (1967).
 (3) W. M. Litchman, M. Alei, and A. E. Florin, *ibid.*, 50, 1031 (1969).

⁽⁴⁾ M. Alei and A. E. Florin, J. Phys. Chem., 73, 863 (1969).
(5) We are indebted to Dr. B. B. McInteer and Mr. R. M. Potter of this laboratory for providing us with this material.

							W	ole % NH							
Solvent	95	6	80	70	68	09	50	45	40	30	20	10	5	3	Q¢
H ₂ O		-17.09	-17.99	-18.66		- 19.24	-19.46		-19.56	-19.53	-19.51	-19.47			-19.4
Me ₂ O		-14.67	-13.57	-12.68		-11.76	-10.93		-10.19	-9.47	-8.91	-8.35			-7.7
MeaN		-14.89		-13.28			-12.02			-11.02	-10.59	-10.29			-10.0
Me,C								-12.07		-11.67	-11.47	-11.26			-11.1
MeNH ₂		-15.33		-14.13			-13.56			-12.85					-12.3
MeOH				-15.10			-14.46			-13.89		-13.61			-13.4
EtOH		-15.82		-15.99			-16.21			-16.48		-16.55		-16.63	-16.6
Me ₂ NH		-14.97		-13.53			-12.31			-11.21		-10.45			-10.1
EtNH,					-14.70		-14.33			-13.98		-13.73			-13.7
Et ₂ O							-12.48			-11.79		-11.13			-10.8
EtaN							-13.49			-13.05					-12.4
Et ₂ NH							-13.57			-13.15		-12.83			-12.7
NH3															-15.9
CCL							-15.88				-15.97	-15.79	-15.76		
NH	-20.74	-24.90	-31.99	-35.44											
^a All shifts l nearly the satu	paramagnetic iration solub	(downfield)	relative to ¹⁵ 7 Cl in NH ₃ at r	VH ₃ (g). Unit oom temperat	ts are ppm. ure.	^b Shifts deriv	ed by extrapc	olation of plo	tted data (Fi	gure 1). ° Sh	uift actually c	orresponds to	o 72 mole %	NH ₃ which	represents

 $^{15}\rm NH_3(l)$ relative to $^{15}\rm NH_3(g)$ was also determined and corrected for susceptibility assuming a vapor susceptibility of zero. Finally all $^{15}\rm N$ shifts were calculated relative to the $^{15}\rm N$ resonance in gaseous $^{16}\rm NH_3$ as zero. It is estimated that the over-all uncertainty in the reported shifts does not exceed ± 0.2 ppm.

The reported proton spectra were obtained in the usual way on the Varian D-60A spectrometer with external lock-on and internal TMS as reference. The proton shifts are probably accurate to ± 1 Hz in 60 MHz.

Results

1. ¹⁵N Chemical Shifts. Table I and Figure 1 display the measured ¹⁵N shifts for ¹⁵NH₃ as a function of concentration in each of the solvents used in this work. The shifts are relative to the ¹⁵N resonance of gaseous ¹⁵NH₃. All measurements are at 29.6 \pm 0.5° and the data are corrected for liquid volume susceptibilities. Since the data fall on smooth curves and since, in each case, the change in shift decreases with decreasing NH₃ concentration, we assume that each curve may be extrapolated to zero NH₃ concentration to yield an "infinite dilution shift" characteristic of the ¹⁵N environment when a single ¹⁵NH₃ molecule is surrounded by solvent molecules. These infinite dilution shifts obtained by extrapolation of the experimental data are listed under zero NH₃ concentration in Table I.

Since small concentrations of NH_4^+ were used to promote rapid proton averaging in some solutions, we were interested in quantitatively measuring the ¹⁵N shift produced by addition of NH_4^+ to ¹⁵NH₃. The measured ¹⁵N shifts for ¹⁵NH₃ with varying amounts of added NH_4^+ (as NH_4Cl) are listed in Table I and the first two points plotted in Figure 1. The lower limit of 72 mole % NH₃ is near the saturation solubility of NH₄Cl in liquid NH₃ at room temperature. Although these data demonstrate that addition of NH_4^+ produces a large downfield shift, the roughly 10^{-3} mole % NH₄⁺ used to promote proton averaging in some of the NH₃-solvent systems does not significantly affect the ¹⁵N shifts in those systems.

2. Proton Data. Although we are mainly concerned with ¹⁵N shifts in this work, we have also measured ¹⁵NH₃ proton shifts in most of the same ¹⁵NH₃solvent systems. For solvents with no protons capable of rapid averaging with ¹⁵NH₃ protons, such shifts may be directly indicative of interactions between the solvent molecules and ¹⁵NH₃ protons. Table II and Figure 2 summarize the measured ¹⁵NH₃ proton shifts in such solvents.

Discussion

The data presented here display several important features. With regard to the ¹⁵N shifts, we note that in none of the solvents studied does the shift for ¹⁵NH₃ at infinite dilution appear to be the ¹⁶N resonance position in gaseous ¹⁵NH₃. Moverover, the infinite dilution shifts are not determined solely by the solvent functional group. In fact, for solvents with the same functional group, solvent ethyl groups lead to infinite dilutions shifts which are consistently downfield of those in solvents with methyl groups. We also note a trend which appears to be related to a contribution by solvent functional-group protons. Thus the infinite dilution shifts in MeOH and EtOH are downfield of the shifts in

(6) J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High Resolution Nuclear Magnetic Resonance," McGraw-Hill Book Co., Inc., New York, N. Y., 1959, p 81.

Litchman, Alei, Florin / ¹⁵N Nmr Shifts in Liquid ¹⁵NH₃-Solvent Mixtures

Figure 1. $~^{16}N$ nmr shifts in $~^{15}NH_3$ –solvent systems at 29.6 \pm 0.5°.

Figure 2. $NH_{\rm 3}$ proton nmr shifts in $NH_{\rm 3}\text{-solvent}$ systems at 29.6 \pm 0.5°.

 Me_2O and Et_2O , respectively. Similarly for the aminesolvent series Me_3N , Me_2NH , $MeNH_2$, and Et_3N , Et_2NH , $EtNH_2$, there is, in each case, a progressive shift downfield with increasing number of solvent, functionalgroup protons.

Journal of the American Chemical Society | 91:24 | November 19, 1969

	2						-14.8
	5			-5.6			-15.6
	10	-18.0	-24.0	-6.8	-19.3		-15.3
	20	-21.1	-25.2	-9.6			-20.4
	30	-24.1	-26.8		-21.5	-21.1	
NH,	40	-27.3		-16.3			
, alow	45			-17.7			
	50	-29.3	-31.1	-18.9	-26.4	-26.0	-22.4
	60	-31.7					
	70	-34.1	-34.5				
	80	-36.8					
	90	-37.9	- 39.9				
	Solvent	Me _s O	Me _a N	MetC	Et ₂ O	EtaN	ccľ

Table II. NH₃ Proton Shifts in NH₃-Solvent Mixtures⁴

^a All shifts in Hz at 60 MHz relative to internal TMS.

The above observations suggest that the measured infinite dilution shifts may be the results of interaction of the ${}^{15}NH_3$ molecule with specific solvent-molecule sites and that each such interaction may be relatively independent of the over-all composition of the solvent molecule. We thus consider the possibility that the observed shifts may be derived by appropriate summation of a relatively small number of "interaction parameters" which are constant over the entire group of solvents studied. For this purpose, we assume a simple model in which the ammonia molecule is entirely surrounded by solvent molecules. We consider two general types of interactions to be responsible for the observed ${}^{15}N$ shifts.

(1) The interaction of the ammonia nitrogen lonepair electrons with a solvent molecule. This interaction may be either hydrogen-bond formation with solvent functional-group protons or some sort of interaction between the nitrogen lone pair and solvent R groups. We thus assume that the nitrogen lone pair is always associated with either a solvent proton or solvent R group (*i.e.*, CH_3 or C_2H_5) and does not interact in any way with solvent basic sites (i.e., oxygen or nitrogen). In solvents with more than one site (i.e., solvents containing both functional-group protons and R groups) available for interaction with the nitrogen lone pair, we simply assume that the probability of interaction with a particular solvent site is directly proportional to the relative abundance of that site in the solvent molecule. This interaction is assumed to contribute $\sigma_{A_{\tau}}$ ppm to the ¹⁵N shift relative to gaseous ¹⁵NH₃.

(2) Hydrogen-bond formation between solvent electron-donor sites and the NH₃ protons. We assume the NH₃ protons are always associated with solvent oxygen or nitrogen and do not interact in any way with other solvent groups. This effect is assumed to operate through the ¹⁵N-H bond to alter the shielding at the ¹⁵N nucleus and to contribute σ_{B_x} ppm to the ¹⁵N shift relative to gaseous ¹⁵NH₃.

We now assume that the infinite dilution shifts in all the solvents studied (except CCl_4 which will be discussed separately) will be given as a linear combination of six interaction parameters each of which makes a contribution to the ¹⁵N shift due to the indicated interaction:

- σ_{AOH} hydrogen bonding between the ¹⁵NH₃ nitrogen lone pair and a solvent OH proton
- $\sigma_{\rm ANH}$ hydrogen bonding between the ¹⁵NH₃ nitrogen lone pair and a solvent NH proton
- σ_{AMe} interaction between the ¹⁵NH₃ nitrogen lone pair and a solvent methyl group
- $\sigma_{A_{Et}}$ interaction between the ¹⁵NH₃ nitrogen lone pair and a solvent ethyl group
- σ_{Bo} hydrogen bonding between solvent oxygen lone pairs and ¹⁵NH₃ protons
- σ_{BN} hydrogen bonding between solvent nitrogen lone pairs and ¹⁵NH₃ protons

We assume that each of the above parameters is a constant, independent of the solvent molecule in which the particular solvent site is located. Thus σ_{ANH} has the same value whether the solvent be MeNH₂, Et₂NH, etc., and σ_{B_0} is the same in Me₂O, EtOH, etc.

On the basis of this model and the indicated assumptions, we write for the infinite dilution shift for $^{15}NH_{3}$ in EtOH as solvent

$$\delta_{\rm EtOH} = \frac{1}{2}\sigma_{\rm AEt} + \frac{1}{2}\sigma_{\rm AOH} + \sigma_{\rm BO}$$

In EtNH₂

$$\delta_{\rm EtNH_2} = \frac{1}{3}\sigma_{\rm AEt} + \frac{2}{3}\sigma_{\rm ANH} + \sigma_{\rm BN}$$

The scheme of coefficients for each of 13 such equations, one for each solvent used, is listed in Table III. A least-squares treatment of the 13 equations yields a set of interaction-parameter values which gives the best fit to the experimentally determined infinite dilution shifts. Table IV lists these best values for the interaction parameters and compares the experimental infinite dilution shifts with the shifts calculated from the best parameter values. Although some of the discrepancies between calculated and experimental values (as great as 1.2 ppm in the case of EtOH as solvent) lie outside our experimental uncertainty, the agreement is surprisingly good when one considers the underlying assumptions. In particular, the assumption of constancy of the interaction parameters from one solvent to another must certainly be an oversimplification. We must also emphasize that in order to get the unique set of best parameter values listed in Table IV, the value for $\sigma_{A_{Me}}$ must be fixed at the ¹⁵N infinite dilution shift for ¹⁵NH₃ in neopentane. This, in effect, assumes that in neopentane the only interaction is one which is characteristic of the interaction between the ¹⁵NH₃ nitrogen lone pair and a solvent methyl group.

Table III. Scheme of Coefficients

Solvent	$\sigma_{\rm AMe}$	σAEt	$\sigma_{\rm ANH}$	σ_{AOH}	$\sigma_{\rm BN}$	$\sigma_{\rm B0}$
H₂O				1		1
Me ₂ O	1					1
MeaN	1				1	
Me ₄ C	1					
MeNH ₂	1/3		² / ₃		1	
MeOH	$\frac{1}{2}$			$\frac{1}{2}$		1
EtOH		$\frac{1}{2}$		1/2		1
Me ₂ NH	² /3	•	1/3		1	
EtNH ₂		1/3	2/3		1	
Et ₂ O		1				1
Et ₃ N		1			1	
Et₂NH		2/3	1/8		1	
NH_3			1		1	

In the light of the assumptions involved in the foregoing treatment, we can only offer it as a simple interpretation which gives a good fit to the experimental observations. That it is the correct interpretation is certainly open to question. If we accept it, we are led to believe that an ¹⁵NH₃ nitrogen lone pair is just as likely to interact with a solvent methyl or ethyl group as it is with a solvent functional-group proton. Moreover, the effect on the ¹⁵N shift is not much greater for the latter interaction than for the former (compare, for example, σ_{ANH} and σ_{AE}). Since protons attached to carbon are not generally considered to enter into hydrogen bonding, we presume that the interaction between the nitrogen lone pair and methyl or ethyl groups may be of the van der Waals type. Hindman, Svirmickas, and

 Table IV.
 Values of Parameters and Calculated Results

Best	T	nfinite dilu	tion shifts-	
values, ppm	Solvent	Exptl	Calcd	Dif
σ _{AOH} -23.1	H₂O Ma O	- 19.4	-19.8	-0.4
$\sigma_{\rm ANH} = 17.0$	Me ₂ O Me ₃ N	-10.0	-7.8 -9.0	+1.0
$\sigma_{\rm AEt} = -14.4$	Me₄C MeNH₂	-11.1 -12.3	-11.1 -12.9	0.0 - 0.6
$\sigma_{\rm AMe} = -11.1$	MeOH EtOH	-13.4 -16.6	-13.8 -15.4	-0.4 + 1.2
	Me ₂ NH	-10.1	-10.9	-0.8
0B0 - 3.31	Et ₂ O	-10.8	-11.0 -11.1	-0.3
$\sigma_{\rm BN}$ +2.13	Et₃N Et₂NH	-12.4 -12.7	-12.3 -13.1	$+0.1 \\ -0.4$
	NH ₃	-15.9	-14.9	+1.0

Dixon⁷ have shown that such interactions can make significant contributions to proton liquid-association shifts in certain systems. It is not inconceivable that such interactions could produce even larger effects at the ¹⁵N nucleus if the ¹⁵N lone pair were directly involved.

The assumed model also produces the interesting result that the σ_{Ax} parameters are considerably larger in magnitude than the σ_{Bx} parameters and of opposite sign. The much larger effect of the lone-pair interactions seems intuitively reasonable since these are directly associated with the ¹⁵N nucleus while the interactions at the NH₃ protons are further removed. The direction of the σ_{A_x} shift, however, is not simple to interpret. On the basis of the generally accepted hypothesis that changes in chemical shift of nuclei other than protons are dominated by the effects of bonding on the paramagnetic term in the Ramsey chemical-shift formulation,⁸ our results would indicate that hydrogen bonding or other interactions involving the nitrogen lone pair result in an increase in the paramagnetic term. Such an increase could result from a decrease in ΔE , the average excitation energy for the lone-pair electrons, or an increase in $\langle 1/r^3 \rangle_{av}$. Stevenson, Coppinger, and Forbes⁹ have shown that ultraviolet absorption band for NH3 dissolved in H₂O is shifted to higher frequency relative to its position when dissolved in dry Et₂O. This indicates that hydrogen bonding *increases* ΔE and hence, if the change in ΔE were the predominant effect, the shift of the ¹⁵N resonance for ¹⁵NH₃ in H₂O should be upfield of that for ¹⁵NH₃ in Et₂O. This is clearly not so. Thus, if the paramagnetic term dominates, the observed shifts would require that hydrogen bonding produce a contraction of the lone-pair orbital such that the increase in $\langle 1/r^3 \rangle_{av}$ would more than offset the increase in ΔE . On the other hand, Lambert, Binsch, and Roberts¹⁰ have proposed that the paramagnetic term is at a minimum for the ¹⁵N shift in the spherically symmetric NH_4^+ ion. They further state that the ¹⁵N shift in $^{15}NH_4^+$ relative to $^{15}NH_3$ "is downfield because protonation removes shielding by the unshared pair." This would imply that changes in the diamagnetic term of the Ramsey formulation dominate the ¹⁵N chemical

shift between ¹⁵NH₃ and ¹⁵NH₄⁺. On this basis, a paramagnetic shift would be due to a decrease in the diamagnetic term. This would require a decrease in $\langle 1/r \rangle_{av}$ which implies an *expansion* of the lone-pair orbital as a result of hydrogen bonding or van der Waals interactions. The diamagnetic nature of the σ_{B_x} parameters would furthermore suggest that elongation of the ¹⁵N–H bond by hydrogen bonding of the ¹⁵NH₃ protons causes a small displacement of the bonding electrons toward the ¹⁵N nucleus. These conclusions are consistent with the proposals of Burawoy¹¹ concerning the effects of hydrogen bonding on electron displacements about the oxygen nucleus in phenolic substances. However, it is also possible that the nmr shifts may be due to changes in bond hybridization rather than electron displacements.

That there is indeed an interaction between solventmolecule unshared electron pairs and the ¹⁵NH₃ protons giving rise to the σ_{B_x} contributions to the ¹⁵N shift is substantiated by the proton shift data in Figure 2. Only in neopentane as solvent does it appear that the ¹⁵NH₃ proton shift at infinite dilution may be essentially the same as in gaseous ¹⁵NH₃. For all other solvents, the ¹⁵NH₃ proton resonance at infinite dilution appears to be paramagnetically shifted relative to gaseous ¹⁵NH₃. This would be consistent with hydrogen bonding between solvent-molecule electron pairs and ¹⁵NH₃ protons. Moreover, the apparent lack of any relationship between the proton shifts and ¹⁵N shifts for ¹⁵NH₃ in those solvents where both were measured is consistent with the result that the interaction responsible for the proton shift (σ_{B_x} type) plays a relatively unimportant role in determining the ¹⁵N shift.

The effect of NH₄⁺ on the ¹⁵N shift in NH₃ is interesting. Lambert, Binsch, and Roberts¹⁰ report the ¹⁵N shift in aqueous ${}^{15}NH_4^+$ to be -24 ppm relative to the ¹⁵N resonance in pure liquid NH₃. If we assume that the ¹⁵N shift produced by adding NH₄⁺ to liquid ¹⁵NH₃ is simply due to the averaging of the shift of the ¹⁵N nucleus in the liquid ¹⁵NH₃ environment with its shift in the ${}^{15}NH_4^+$ environment, we obtain a shift of -85ppm for the ¹⁵N shift in ¹⁵NH₄+ relative to ¹⁵NH₃. At first glance, this might suggest that surrounding the ¹⁵NH₄⁺ ion by NH₃ molecules instead of H₂O molecules produces a strong downfield shift in the resonance of the ¹⁵N nucleus in the ¹⁵NH₄⁺ ion. However, in liquid NH₃ with added NH₄+, the very rapid proton exchange causes the ¹⁵N resonance to represent an average overall ¹⁵N environment. If we focus attention on the ¹⁵NH₃ molecules in the first sphere about an ¹⁵NH₄+ ion, we would expect, on the basis of our earlier arguments, that the interaction between the lone pairs of these ${}^{15}NH_3$ molecules and the ${}^{15}NH_4^+$ ion would cause a strong downfield shift in the ¹⁵N resonance of the firstsphere ¹⁵NH₃ molecules. It is thus conceivable that the discrepancy between the ¹⁵N shift in aqueous NH₄+ and the shift produced by adding NH_4^+ to liquid NH_3 is not due to any large solvent effect on the ¹⁵N resonance in the ${}^{15}NH_4^+$ ion itself, but rather is the result of the large downfield shift produced in the ¹⁵N resonance of the ${}^{15}NH_3$ molecules which surround the NH_4^+ ion in liquid ¹⁵NH₃.

⁽⁷⁾ J. C. Hindman, A. Svirmickas, and W. B. Dixon, J. Chem. Phys., 47, 4658 (1967).

⁽⁸⁾ N. F. Ramsey, *Phys. Rev.*, 78, 699 (1950); C. J. Jameson and H. S. Gutowsky, *J. Chem. Phys.*, 40, 1714 (1964).
(9) D. P. Stevenson, G. M. Coppinger, and J. W. Forbes, *J. Am.*

⁽⁹⁾ D. P. Stevenson, G. M. Coppinger, and J. W. Forbes, J. Am. Chem. Soc., 83, 4350 (1961).

⁽¹⁰⁾ J. B. Lambert, G. Binsch, and J. D. Roberts, Proc. Natl. Acad. Sci. U. S., 51, 735 (1964).

⁽¹¹⁾ A. Burawoy in "Hydrogen Bonding," D. Hadzi, Ed., Pergamon Press, London, 1959, pp 259-276.

The ¹⁵N nmr shift for ¹⁵NH₃ dissolved in CCl₄ is especially interesting in that it coincides almost exactly with the ¹⁵N shift in pure liquid ammonia and is essentially independent of solution composition. This would suggest that either the ¹⁵NH₃ molecules dissolved in CCl₄ tend to remain in aggregates with structures similar to those in pure liquid ammonia (even down to 2 mole % NH₃ in CCl₄) or that the interaction between an ¹⁵NH₃ molecule and surrounding CCl₄ molecules produces an ¹⁵N shift (relative to gaseous ¹⁵NH₃) of almost exactly the same magnitude as that due to hydrogen bonding between ammonia molecules in pure liquid ammonia. The fact that the proton shifts in the ${}^{15}NH_{3}$ -CCl₄ system move to significantly higher fields (relative to liquid ¹⁵NH₃) with decreasing ¹⁵NH₃ concentration indicates that the liquid ammonia structure is being broken. We would thus conclude that the interaction of ${}^{15}NH_3$ with CCl₄ produces a rather large downfield shift of the ¹⁵N resonance. In terms of our model, an interaction between the nitrogen lone-pair electrons and the CCl_4 molecule contibutes $\sigma_{\text{Acc}_{14}}$ to the ${}^{15}\text{N}$ shift where σ_{Accu} is negative and comparable in absolute magnitude to $\sigma_{A_{NH}}$. Clearly $\sigma_{A_{CCL}}$ represents a sizable shift which cannot be ascribed to hydrogen bonding. If we assume that the interaction is of the dipole-induced dipole type, the magnitude of $\sigma_{A_{CCL}}$ may be attributable to the large polarizability of the C-Cl bond (four times as large as for the C-H bond) or of the CCl₄ molecule as a whole. This interpretation is, however, purely speculative and other self-consistent interpretations of the experimental observations could, no doubt, be given. In any case, it seems probable that ¹⁵NH₃-solvent interactions other than hydrogen bonding may produce large shifts of the ¹⁵N resonance. If this is so, the ¹⁵N shift as a measure of hydrogen bonding in amine systems may be of limited utility.

Microcalorimetry. Thermodynamics of the Reaction of an Anionic Detergent with a Cationic Detergent¹

G. J. Papenmeier and J. M. Campagnoli

Contribution from the Ames Research Laboratory, Ames Company, Division, Miles Laboratories, Inc., Elkhart, Indiana 46514. Received May 15, 1969

Abstract: The heat of reaction of sodium dodecyl sulfate and cetylpyridinium chloride was measured at 37° with a Beckman microcalorimeter. The critical micelle concentration of each detergent was determined in distilled water, 0.0001 M NaCl, and 0.145 M NaCl, and heats of dilution were measured at several concentrations of each detergent. In all but two cases, this heat of dilution was a composite including the dilution of monomers, the dilution of micelles, and the heat of micellization. Since the product micellizes, the enthalpy reported includes the ΔH° of interaction plus the ΔH° of the mixed micelle formation. Two approaches were used in an attempt to interpret the data. The first disregarded the micellization of the product, giving rise to a ΔH° of ~ -18 kcal/mol, an equilibrium constant of 2×10^6 , a ΔG° of ~ -9 kcal/mol, and a ΔS° of ~ -30 eu. The second considered the micellized products as a pseudophase and the unmicellized portion as having constant activity. In this instance, an equilibrium constant of $\sim 3 \times 10^{10}$, a ΔG° of ~ -15 kcal/mol, and a ΔS° of ~ -11 eu were obtained. The ΔH° is the same in both cases. These results are discussed in terms of the nature of the product and precipitate, effect of pH, and the plausibility of the thermodynamic parameters.

his paper describes an attempt to extend the thermodynamic treatment of microcalorimetric data to reactions of the general type $A + B \rightleftharpoons C$. Similar work has already been described by Benzinger² for other systems. This system is of interest because certain biological reactions are of this type. It was hoped that this study could serve as an entree to the investigation of such biological interactions.

The use of oppositely charged detergents as reactants was suggested by the paper of vanOss.³ He demonstrated the reaction by precipitation in an agar double diffusion study.

Although the reaction of charged detergents with one another has been utilized in analytical titrations for

(1) Presented in part at the 2nd Great Lakes Regional Meeting of the American Chemical Society, Milwaukee, Wis., 1968, and at the 23rd Annual Calorimetry Conference, Midland, Mich., 1968.
(2) T. H. Benzinger, Proc. Natl. Acad. Sci. U. S., 42, 109 (1956).
(3) C. J. vanOss and Y. S. L. Heck, Z. Immunitaetsforsch., 122, 44

(1961).

some time,⁴ there appears to have been little work directed toward the definition of the reaction parameters and the nature of the product. Scowen and Leja⁵ have studied the product spectroscopically, and Hua and Chao⁶ have measured the surface activity of mixed detergent micelles. Letsinger and Wagner⁷ used an anionic detergent to counter the supressor activity of a cationic detergent in a hydrolysis reaction.

In this paper, measurements of the heat evolved during the interaction of sodium dodecyl sulfate (DSS) and cetylpyridinium chloride⁸ (CPC) are described. The reaction is expected to be of the type $A + B \rightleftharpoons C$, but complicated by aggregation of the monomers and the product.

- (4) W. B. Smith, Analyst, 84, 77 (1959).
 (5) R. V. Scowen and J. Leja, Can. J. Chem., 45, 2821 (1967).
- (6) H. Hua and K. Chao, Chem. Abstr., 62, 7146b (1965).
 (7) R. L. Letsinger and T. E. Wagner, J. Am. Chem. Soc., 88, 2062
- (1966).
- (8) 1-Hexadecylpyridinium chloride.